United States Patent

US009430195B1

(12) (10) Patent No.: US 9,430,195 B1
Pecoraro et al. 45) Date of Patent: Aug. 30,2016
(54) DYNAMIC SERVER GRAPHICS 2002/0087497 Al 7/2002 Troianova et al.
2004/0111672 Al* 6/2004 Bowman et al. 715/513
. ; : 2006/0242261 Al 10/2006 Piot et al.
(75) Inventors: %EX?SDS X ?gcgrfoé.{{urgef;’ ﬂg” é\f 2007/0033221 Al 2/2007 Copperman et al.
(US); David E. Antila, axland, 2007/0157165 Al 7/2007 Kim
(US); Sheppard D. Narkier, Charlotte, 2008/0040364 Al 2/2008 Li
NC (US); Paul Renaud, Ottawa (CA) 2009/0273604 Al* 11/2009 Kim ..o, 345/522
2011/0087704 Al 4/2011 Bishop et al.
: . : 3 2011/0145657 Al 6/2011 Bishop et al.
(73) Assignee: (Egg)c Corporation, Hopkinton, MA 2010153712 AL* 6/2011 Whetedl - 709/201
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Information Disclosure Statement (IDS) Letter Regarding Common
S.C. ays. Patent Application(s), dated Jul. 18, 2012.
U.S.C. 154(b) by 693 day
Information Disclosure Statement (IDS) Letter Regarding Common
(21) Appl. No.: 13/044,774 Patent Application(s), dated May 15, 2013.
Information Disclosure Statement (IDS) Letter Regarding Common
(22) Filed: Mar. 10, 2011 Patent Application(s), dated Mar. 21, 2012.
Related U.S. Application Data * cited by examiner
(60) Provisional application No. 61/342,651, filed on Apr.
16, 2010. Primary Examiner — Xiao Wu
Assistant Examiner — Mohammad H Akhavannik
(51) Int. CL (74) Attorney, Agent, or Firm — Krishnendu Gupta; Joseph
GO6F 15/00 (2006.01) D’ Angelo
GO6F 9/45 (2006.01)
GO6F 17/22 (2006.01) (57) ABSTRACT
GOGr 17/24 (2006.01) A method of dynamically generating a graphic includes
GO6T 11/60 (2006.01) .. < .
receiving, at a vector graphics engine loaded on a server
(52) US. ClL) system, graphic template input; receiving, at the vector
CPC oo G06Pj 8/40 (2013.01); GO6F 1.7/ 2247 graphics engine loaded on the server system, data template
(2013.01); GOGF' 17/248 (2013.01); GOGT input; and generating, at the server system, code in a
11/60 (2013.01) standard format representative of a vector graphic. The
. . . i% grap
(58) Field of Classification Search generating includes identifying a special tag associated with
None o) the vector graphics engine, converting code associated with
See application file for complete search history. this tag from a first format associated with the vector
. graphics engine to a second standardized format, and bind-
(56) References Cited ing data content based on the received data template input to
U.S. PATENT DOCUMENTS graphic content based on the received graphic template
input.
7,162,427 Bl 1/2007 Myrick et al.
7,430,343 B2* 9/2008 Hayes et al. 382/305 20 Claims, 31 Drawing Sheets
S

/

Graphtﬁ
Ten;;:late W //ﬁ 102
Graph[::S

Template
#2

SVG File

Data
Template

Vector Graphics

/f 101

<output> Vector

Englne Graphic

<read>

e 107

Data Source

US 9,430,195 B1

Sheet 1 of 31

Aug. 30, 2016

U.S. Patent

} O

20IN0S EJRQ

0 K

/
Jasied
aledws] QM_HM@H
ejeq
olydess $88001(580014
JOJ3A Buieos 1« Buipuig %0 —~
eIsuss) 3 Inoken eleq /
\ sesied |
voL — 601 - 0L oedue) [¢ m%_mmﬁ
/| owdes eeo
GoL \
auIbu3 solydels) J0j0a\)
1

US 9,430,195 B1

Sheet 2 of 31

Aug. 30, 2016

U.S. Patent

92In0g Ejeqd

00—
gpejdwa

<peal> 2eq

d
oo, | <ndinos ﬂ auibug 914 91
e | soydeus) 10109

Ko

<8pnjoul>

0l _/ g0z
cH
gjejdwa

ydeio

Vi
deidwa

ydei

201 \ <3pNpul>

¢ 9l

US 9,430,195 B1

Sheet 3 of 31

Aug. 30, 2016

U.S. Patent

JunoD aur [eloL - N
wal -]
109y -1
el -}
pusba

uonisod auif 1xo3 o) St U a184M
(1-U) , UBIBHIUOH + 1A = UA
{“BUIMUIPIM - M + X = UX

id + (N, ubieHuoS , 'A) = H
{d -2 —M="m

ui +%>H~>

tn_ +&AH~X

{id + 2) + (u ybreppuo4 ,JA) =°H
M =M

WBIBHILOS + A = A

X =X

WOy = ubiy

<bj>
<Jxa)>
<uedsy>Jsy<c A=A ‘tx=x ueds)>
<Uedsy>

pajaensip 6unood sJoqubisu sy Jo [[BWS ayj<ZA=A ‘Zx=x ueds}>

<uedsy/> un

aseyd sweb 6op oy pue swoy uel Aog ay| <+ A=A ‘1x=x ueds)>

<G =3|A1s A=A X=X X8)>

</ Sy=a1fis ‘M=ubiey “M=uppim A=A X=x J081>

uonisod aulj xa} o} SI U a1oyMm
(1-u) , WBIBHIWOS + A = A
((sourupip = M) » 60 + X =X

td + (N «uBisHuOS , *A) = H
(d) =M ="M

ui +V>Hu>

tn_ +_XHMX

{d « 2) + (U yBreHuod ,JA) =*H

£ 94

uomsod aulf 1xa} a4j SI U a19yM
(1-u) , JuBIBHIOL + A = "A
Y =Y

id + (N . JuBIBHIUOS , *A) = 'H
{d 2 =M="M

%& + %> = H\f

tn_ + %X = ux

{id «2) + (u ybropuod , 'A) =*H

=M =M
WBIBHIUOS +}A = *A WBIBHIUOS +4A = ‘A
_X = kVA wx = _X
Jeyuag = ubly yeo = ubly
4
d
A A~ TH M LX) RS
) 18y pajorsip Bunjooo's Joqubisu el Jo |jss I
»idle il
_ aup nun aseyd aaeb Gop m<5 pue awoy uel fog ay) |
||||||||||||| i
("H "M YA TX) 109y
<xa):6sp/>

18y pajoeusip Buiyooo s Joqubisu

ay} Jo [laws sy [nun aseyo aneb Bop ey pue swoy uel Aog sy

<{asdyg ‘eyl=edfy

Sy=a1A15108Y S1=2Q1SIxa L {181u8) by YeT}=ubly

A@V
[e)UOZUOH - 8jdwex3 IdinO OAS

Jd=ped Ip=ppim A=A X =x xen)Bsps>
gidwex3 2908 95Q

US 9,430,195 B1

Sheet 4 of 31

Aug. 30, 2016

U.S. Patent

uno?) yeaday —u
ssdi3 -9
s|Bue)oay — I
([Rk
flepunog - q
fely —e
pusta]

(aH / BH "M / BMUIA © OH [BH ¢ (8s|ej==10adSY,) = BSA
(aH / BH "GM / BAMUIA © OM / B ¢, (8SIEj==108dsY,) = BSX

BS . (1-U) +9H « U= OH
oM = IM

OH «€S% = €S
(BAY+8A “IH+IA) XBIN = 9H

(oxXy+0X “IM+IX) XEI = OM
umoqy, = uolosliq

)=
(AH /8H "aM / BMUIA © GH / BH ¢ (as[ej==p0adsY,) = BGA
(QH / BH ‘G / BAMUIA © M / B ¢, (8S[ej==108dsY,) = BSX

9H = GH
S, (1-U) + oM U=am

M . BSY% = B
(8AM+8A "IH+IA) XBIN =2H

(axy+8X "IM+IX) XBI = OM
Jybry, = uonosug

</ @AY =M | BXH =M { BAA f BX,=0x 88dl||T>

</ H.=mB18Y “ A =P * JA=A " X, =X BlBuejosy >
<(0'[eS+oM].2)are suel, =Wiojsuel) B>

<>

</, BAM.=A1 { 8%, =X BA=0K | BX,=0x asdl|| 3>
<fHEMBIBY “ M, =PI A=K X =X olBueay>
<, (0'eS+oM)Bre SUEL, =WLIOjSUES) B>

<by>

</, BAM. =) F BXM. =X BA=0K | B),=0x asdl|| 3>
<fHEWBIBY * M. =PI ‘A=K X=X olBUepay>
<,(0'0)areIsuen, zuLiojsuEs B>

<€ ES P 4 ES P
(0AY ‘oxXY ‘oA ‘Tes+opml.Z+0X) (2AY 'oXY ‘oA '[es+opl+ex) (8AY "aXY ‘oA 'OX)
‘esdi|3 osdillg ‘osdilig
(H “Ip IA Tes+omlz+ix) (UH I A eS+oMI+IX) (IH I8 A 90
Josy Jo8y Josy
(oH ‘om ‘0 ‘les+oml2) 11RO (oH "op ‘0 "eS+OM) 118D (oH ‘oM ‘0 ‘0) “118D
B - @4 9 0 0) iepunog

<ReLue:bsp/>
</ ORY,=A1" B%XYH,=XI ' BA.=0A ‘o, =ox asd||| 3>
<[HAUBIBY * A =UIPIA ‘A=K IX,=X BlBUESY>

<, 8S[BY,=108dse S %,=buioeds ‘ Jybiy,=uonoalip ‘ eH,.=ubiBY | BM.=UIPIM L BA=A f BX,.=X AeleBsps>

< (BSA/BA ‘'BSX/EX)RIRISUR (ESA ‘BSX)B(E0S, =ULoiSuEl B>

By - sjdwex3 IndinD OAS

g|dwex3 a21nog 98

US 9,430,195 B1

Sheet 5 of 31

Aug. 30, 2016

U.S. Patent

uno? Jeaday Uep — AU
Juno?) yeadayzioH — xu
EEdERE:
ajbueoey -1
180 -2
fepunog - q
feLy -e
puaba]

<by/>

</, OAM. =M oXY. =X L BA=0K { X, =0x asdy|T>

</ HSWBIBY * M =PI " A=A MX, =X 8|Bue)osy >
< (BSA+OH [eSH+oM] 2)are suel, zulojsues B>
<by>

</, OAM. =M oXY. =X L BA=0K { X, =0x asdl|T>

<l H.=UBIBY "M, =PI * JA=A * X=X SlBUERY>
<,(BSA+OH ‘BSH+OM)ale[SUBl, =uLiojsuel B>

<bf>

<[BAY A XY, =X BA=OR " OX, =0 osdl 3>
<fdHENBIY M, =UPIM ‘A=K X =X 8lBuBjoRy>
<,(eGA+9H' 0)leIsUe = ULojSue) B>

<Bj>

<LBAY =M BXY A " BA=0K " X =0x 85dl|T>

< HNBIBY ‘AW =UIDIM * A=K X=X SlBUEOsY>
<,(0'[eSH+oM].2)ete suel, zuLiojsues B>

<bf>

<[BAY A XY, =X BA=OR " OX, =0 osdl 3>
<fdHENBIY "M, =UPpIM A=K X =X 8lBuBjoRy>
<,(0'BSH+oM)81 ISUEL, =WIoSUEY) B>

<Bj>

<LBAY =M BXY A " BA=OK " BX=0x 85dl|T>
<fdH=WBIRY M, =UPIM ‘A=A X=X BlBuBjoRY>
<,(0‘0)eielsues, zuLojsuey 6>

<By>

<{eSAfEA ‘eSX/ex)olesuen (BS A "eSX)oleds,=uwlojsues) B>

|EJUOZLOH - s|dwex3 Inding OAS

(AH / BH ‘G / BMJUIA : QH / BH ¢ (8S[e}==108dsY,) = BSA
(aH /&H ‘aM / BAMUIA © M / BM ¢, (8S[ej==10adsy,) = BSX

BSA , (L-AU) + o4 , Au=qH
BSH . (L-XU) + OM 4 XU = QM

G Ol4
OH , BSA% = ESA
M » BSH% = BSH

(BAY+9A “IH+IA) Xey = oH
(BXH+8X IM+IX) XEI = Op

noAeq

(8AY
‘axy [esA+oHl.g+oA
TesH+oml.z+8x)
asd3

(eAY
‘oY 'eSA+OH+aA

Tes+oml+ex)
esdilig

(eAY 'oxy
[eSA+OHI+OA "oX)
esdilig

(H M
‘lesA+oHLZ+HA TeSH+oMLZ+X)
108y

(oH ‘oM "BSA+OH ‘[BSH+OM,Z) (118D

(1H Im TeSA+OHIHA ‘[eS+om+iX)
108y

(9H ‘oM "BSA+OH BSH+OM) (118D

(H I ‘TeSA+OHI+IA “IX)
108y

(9H ‘oM BSA+H "0) 118D

(8AY ‘BxY
'8\ ‘[eSH+oMLZ+OX)
osdilig

(8AY '8XY
‘8A ‘[ESH+oMI+0X)
esdi3

ESH

(8AY ‘aXy ‘e ‘Bx)
‘osdil|g

(4H Im A TeSH+oMLZ+1X)
Joay

(oH ‘op ‘0 ‘[esH+oMmlZ) 1180

(H I A TeSH+oMI+IX)
109y

(9H "op ‘0 "BSH+OM) 118D

(dH I A XD
109y

(9H ‘oM ‘0 “0) 118D

(QH "am ‘0 ‘0) Arepunog

<plbB:Bspys

</ BAH.=A " BXY. =X L OA=OA | BX,=ox asdl| 3>
</ H.=NBIBY M =UIPIM *JA=A X =X BlBuejosy>
<,88[e),=josdse ' eSAY%,=butedsa | BSHY%,=Bupedsy ‘eH =Blay em =Upiv " BA=A * BX, =X pub:Bsps>

ajdwex3 80Inog 93d

US 9,430,195 B1

Sheet 6 of 31

Aug. 30, 2016

U.S. Patent

junod wey s - N
B3 -2
Arepunog — q
180 -
pusba

<Pxe)f>
T ol

<COA=A ‘COX=X IXO)>

<Pxe)f>
w8l zIeD (¢

<ZOA=A ‘ToX=X IX8)>

<X />
<Uedsy/> 8] g aur Le)<ybIsHIu04,Z+LOA=A ' LoX=x UedS])>
<UedsSy>pxa] zZ aur |I[e)<iybisHiucid+[oA=A ‘|oX=X Ueds]>
L | sur L) (g

<LOA=A ‘| OX=X JX8)>

<JX8l>
el 0190 (1

<QoA=A “Qox=x Ix8)>

aldwex3 ndinQ

<by>

9914

((wemsiubia <4 +18 , (1-N) = QH

IM =AM
IA=0A
X=0ax

(“wamsihubieH = uoH

M = UOAA

JuBleHiuo + ((“wapS>UBIOH) K™ + 1§, U + |A = UDA

1nofe

X = UdX

(€oH ‘6o “€oA “€9X) 119D

(ZoH ‘7oM ‘oA ‘29X) 118D

(1oH “Lom “1oA “19X) 1180

PnE P Pod

(00H *0om “00A “09X) (118D

(aH ‘oM ‘aA ‘ax) Aepunog

I1:Bsp/>xs glle)<ws)
<waisiiBsp/> xa1 € BUIT L|[eQ 1X8L Z BUIT |80 XL | 8UIT |[l8d<wa)
<Waysi:Bsp/>ixal QlleD<weN
< Jaquinu =odA) ‘ IS, =Buioeds ‘|, =Uipm

a|dwex3 a2inog 98Qq

<is1:Bspy>

Bsprsixa] glle<wssy:Bsps

Sp>
Sp>
Sp>

=k *IX, =X 1sI[:Bsp>

US 9,430,195 B1

Sheet 7 of 31

Aug. 30, 2016

U.S. Patent

junod wie) s - N
(AR
Arepunog - q
OB)S - §
pusbay

i WS Io.IS

((wepeshybiay XU + 55, (1-u) = qH

L9

((waiporishubiay)4V + 8, (L-U) = g4

<o/

<1oay=adA] ‘Ieuen=ublly ‘SS=s/iiSadeys ‘S1=0jAISI%a] ‘Sd=ped ‘| OM=UIPIM ‘ LOA=A ‘| OX=X IX8ll>

<Joay=odA} ‘Iauen=ubily ‘gS=0/A1gadeys ‘S1=0jA1SIX3] ‘Sd=ped ‘JoM=UIPIM ‘0oA=A ‘(OX=X 1XOl>

umoq - ajdwex3 inding

L WSY| H0BIS

<xay/>

SAL = M SM =dM
SA=0A SA=0A
SX = aX 8X = ax
(‘woppeshybleH = uoH (‘waporyshuBleH = uoH
SM = UM SA = UOAA
((“werroeishybioH) < + 88 . (1-U) - SA = UOA ((“wapoesshubioH) £ + S , (1-U) + SA = UOA
EL)' EL)'
dn=mo|4 umo=mo|4
v (€9H '€OM ‘€A '€X) 119D
55
A
v (Z9H 290 '29A '79X) 118D
59
A
v (LoH Lo 'LOA '1oX) 118D
35S
A
(09H “09M ‘09A 09X) ‘118D
<bi> (aH ‘am “9A "qx) “Arepunog
opeysbspys
<wa)oeIs:Bsp/sz# Wa)| YorIS<Lsloes:Bsps
AEE_v_oEw_mm_u\v 14 Wa)| «_omﬁwAEQ_v_oﬂw_mw_uv
<(esdl3 ‘way}=adh s=slhisadeys S1=slligIxe] {dn ‘umog)=moy
 Sd.=ped ‘' sg,=6uioeds * Sp =uipim ' SA,=A " SX =X 3oejs:Bsp>

ajdwex3 82108 957

US 9,430,195 B1

Sheet 8 of 31

Aug. 30, 2016

U.S. Patent

8 "9l4

<}OSMOJ/>
<isl/>
<wasl|/>Ixa L MOYS - G# WY IsIT<wsiis!>
<WaNsl|/>IXa L MOYS - p# WY IsIT<wsiIs!>
<WBIs!|/>" 10} Junoooe o) paisnipe Ajjesijewolne si Buioeds
ay) moy smoys pajelsauab sjdwexa ay) Jey) os Buoj A19A Ss1 wa)l elep siyl X9 Buo - ¢ way| I1SI<WalS!|>
<waisl|/>IXa] Joys - Z# Wway| Isiq<was!|>
<wisl|/>IXa] JoYs - L# Wway| Isiq<was!|>
<,8WEeN 3si,=1s!|>
<]JOSMOJ>
<¢,u8-41N.=BuIpooud 0}, =UOCISIaA |UIX{>
:901nogejeq ajdwexgy

<Bas/>
<oeys:aba/>
<IX9)Po)jeuLIo) :obA/>
JeAg
<,.0,.=Buippedixa}
.Lauou:uy,,=91/181004 ,aN|g:1Il,,=91A181%3) .06 L..=1UBIaY ,,00€..=UIPIM ,,06,.=A ..06..=X }XoIpajjewio):aba>
<IX8Y/>UN0D$<,Z |.:9ZIS-JUO)BINIBARH: AIWE-IUOY,=0]A1S BHUM, =|Il} ,29.=A ,0F.=X 1X8)>
</ WPoL =11} 0L.=A1 08, =X ,Z9,=A0 ,0G,=%0 osdi|jo>
<.(1s11$ u1 1eag), =1ea ,00v..=3ubisY ,,00%..=UIPIM ,,0G,=A ,,0G,.=X %oe}s:aba>
<.0001 0051 0 0.=xogmala ,xdoo0L.=ubIdy ,xdoog |..=Upim
JINL,=8|i0Ideseq 1 L,=uoisian ,26a/010z/B10 Auandepe mmm//:dny,=aba:sujwx Bas/000z/B10 cm mmm//:diiy, =sujwx Bass
<¢.,0U,=8uojepuels ,8-41MN.=bulpoaus 0 | ,=UOISIBA |UX{ >
:91dwex3 ajejdwa] oiydeas

US 9,430,195 B1

Sheet 9 of 31

Aug. 30, 2016

U.S. Patent

6 ‘Ol4
wa) woys - g wey s C§ >

X8 L MOYS — t# WY Js1

J1 40} JUNOJJE 0} pajsnipe

Aleanewoine s1 Bupeds auyp moy smoys

pajesouab adwexa sy 1eys os buoj Aiea
SI Wayl eep sy o] Buo - gg wsy 1s] @

:uopezI|eNsIA PaJopudy

wa pous —z# wayisn C g D <Brsy>
POLHOUS — [WAINSIT] A?A@v
<B

[><IX8)f> JX8 UoYS - G# wal| 1817 <,099,=A ,0'06,=X ,00E,=Uipim ,0,=Buippedixe} ,eniq

8lA1s 06 |, =1ubisy Me1></,06,=A ,06.=X ,00€.=Uipim ,0,=Buippedixe} , ‘suou|iy,=e1Ais ,0'8), =By 1081>
<XBY>G<,/9,=A ,OF.=X .| OZIS-IUOLEONAABH AJILIE-LI0Y, =31A1S ,DMUM,=Ilk 1X3)>
</,01.=M ,08.=X1 pal,=ll4 ,Z9.=A0 ,0G.=x0 asdl|je>
<,(981 '0"0G)21EISURY, =WIO)SUR)) B>
<by>
<B

[><IX8)/> IXaL MIOYS - p way I <,0'99,=4 ,0'06,=X ,00€,=Uipim ,0,=Buippedixa} eniq

=01 061, =By 1x81></,06,=A ,06,=X 008, =PI ,0,=Buippedixay ,‘suowt|ly,=a1kis ,0'81.,=3ubleY 10a1>
<XBY>P<,/9u=A Q=X T} :6ZIS-IUOLBONBASH AlIWEJ- U], =8IAIS ,BNUM, =|[LL 1X8)>
<01, =M, 082X pol,=IIY ,29,=A0 ,0G,=X0 asdi|jo>
<,(191 ‘0'0G)eIeISUBy, =WIO)SUE)) B>
B>
<1xa)/><UedS)/>"H 10}
junosae o} pajsnipe Ajleangewolnex,('96,=A .0 06,=x Ueds}><uedsy> s Buioeds ay) moy smoys pajesauab ajdwexa ay) Jeu<,0'z8.=4 .0'06,=x Ueds}><ueds)/> os Buo] A2 si wayl ejep siy] 3xa] BuoT -
€4 WAy 1517<,0°99,=A ,0'06,= UedS}><,0'09,=A ,0°06,=X ,00€,=Up ,0,=Buippedsxa} ,ania: iy, =011 ,0G L, =BIBY Xal></,06.=A ,06,=X ,00€,=UipiM ,0,=Buippedixa) ,‘suou|ly,=sikis ,09,=1ublay j0a1>
<IX8)/>6<,19,=A ,0F.=X .7 :8ZIS-UOLEDISASH AIWBLUOY, =8IRS ,SIUM, =]l 1X8)>
</,0b.=A1 082X Pol,=Il 29,240 ,0G,=X0 asdi|a>
<,(001 ‘0"0G)BIEISURY, =WIO)SURY) B>

,=0IAI8 061 SUBIBY IXel></,08,=A ,06,=X ,00€,=UpIM ,0,=Buippedixs) ,-suouy,=sifis ,0'8},=1ubieY 1081>
<IX8Y/>7<,19,=h ,0F.=X ,Z| BZIS-JUokeDlsAaH AllWeIuoy, =a1AS ,8UUM,=||i X8l>
<f,0L.=A1 082X ,pol,=Ill} ,Z9,=40 ,0G,=X0 asdi|je>
<,(G2 '0°0G)9elsuUen, =wiojsue B>
<Bf>
=alf1s ,0G1.,=IubIeY X8}></,06,=K ,06,=X ,00€.=LAPIM ,0,=Buppedixa} ,‘suouiiy,=21ks ,0'8L,=ublY j081>
A«xmtv_‘A..mw:u\, WOp=X __N_‘uwN_w.Eo&mozmzmI .Eﬂ.acov—_.uw_\cw LSNHUM, =([1) 1X8]>
</,01.=A1 0€,=Xd P31, 29,240 ,0G.=X0 85dI||8>
<,(0G ‘008)aeisUen, =UWloysue Bs
<.06,=A .06,=X ,00v.=uPm 00p,=1uBiay B>
<,Xd00G},=UIPIM ,000L 00SL O 0,=X0gM8IA |."}=uoisien xd000L,=1uBIsY Iy, =0[40Ideseq JUlX/666 /610 ¢m mmw/:dny, = ulx:sujux BAs/000Z/B.0"em mmm/dny,=sujwx Bas>
anding oAS 9jdwexg

<Bf><pey> POL HOYS - Z# Wy IsI <,0'99,=A ,006,=X ,00¢.=Ypm ,0,=Buippedixa) ,enjq

<Bj><ixal/> 1xa) HoyS - 1# Wiy Js17 <,0°99,=4 ,0°06,=X .00, =Uppim ,0,=Buippedixe; ,aniq:

US 9,430,195 B1

Sheet 10 of 31

Aug. 30, 2016

U.S. Patent

OAS'Y

OO

ot

aseqejeq

<pesl>

<djelsuabs)

Bujeas
9sd

N 4 A

1

<o0UsIgisl>

| OASWY aulbug

_ émmw:oo _ _ AuE

%3
dwon

__Em

[
duion

<ssan0.d> <a)elouabs JATRITEYY

aulbug

NXElEQ

N

WA'Y

<$880¢.d>

<djeJauaby

ejeq 9sa

0L "9I4

$53901d

<d)elausby

/

9 9sled
9s8d

<peal>

TNXY

Jojeipsiy 980

auibug abew| osq

<peal>

osaY

-
N

mA“"m._._mv

US 9,430,195 B1

Sheet 11 of 31

Aug. 30, 2016

U.S. Patent

bl O

TAXEleq

<3oUalslal>

<0UsIsjal>

DASD auibuz 9800 oAS'd
b abew; [<epnpul |

suojoun4 ssauisng

suoljoUn4 ssauisng

[sy || sdo || sses | v

ISV aubuz | 980y
<8pnpul> sbew| [«

Lt SdO S9les X

m A“Am.__mv

US 9,430,195 B1

Sheet 12 of 31

Aug. 30, 2016

U.S. Patent

{
uoIIN28xg
opoJ)
auibug
abeuw)

11da
sulbug

sse|D
abew)

Jayidio|
a)e|dwe |

sse|D
abed

Jondwon
abed

¢l 9l

|
|
_mmcoqmom >
|
asrejdwa | _
|
ddess - 1s9nbay
JOIO0A _
|
|
|
|
asuodsay >
abed
L13N'dSY - jsenbay

3sled

US 9,430,195 B1

Sheet 13 of 31

Aug. 30, 2016

U.S. Patent

€L 9l4

[(Z8FZL9718 900 | %00 ooz
q

a

J0jonpuf

10]07p1B
xogbuipunog
= YIPIAMSPIOY
10j0QI8pI0g
an | yipiagishipyoine,
® oydesf Bas-sndbsp Adepe woy

£667196601 - PUOXS

Lo
zlol< < @R\ 2

= [puoxd] @ u
[isydein | Torodxa [0 200

«Lsydessy — 1subiseq osq Aunidepy

US 9,430,195 B1

Sheet 14 of 31

Aug. 30, 2016

U.S. Patent

vl "9Ol4

8509 __ oA

_ jaoue) __ MO __ U0IBULOS J88]

‘plomssed

[uleuIesn _

_ P

7 jo0!

slenuspal)

ABP-0PIBP|INGPNOJIASOY[BOO|/: bSAWLDGPP _

TN eseqeieq

Tosi |

IeAl(8SBARIE(Q 108/8G

159 _ 13U JUBWUOIIALT

ABP-GPISP[INGPROD _ ‘BLUBN UOJOSULOD

IpnisBuljapow-eb

1s8)-0ipmgubisap

1891-A8p-qPIBPIINGPNOIQ

Relli] _ _ ppy _

_ SUORoBULOD

Buipuig ereq

U.S. Patent Aug. 30, 2016 Sheet 15 of 31 US 9,430,195 B1

1 | salect * from businass_function

Query

ID:
d

Update Connections

SQL Queries [Arays T Conditions | Execute Queries]| Finl Operations | Velocity Expression | Perametars |

(20 [ooke]

[t] [Eor] [som] (o=]
FIG. 15

US 9,430,195 B1

Sheet 16 of 31

Aug. 30, 2016

U.S. Patent

91 "9l4

anndino I uoipauuod al fenp |bs

_ al

_ sisjallrled nduj aepdn __ apleq __ hlle=| _ ppy _

$aLIBNY 9JN0sx3 dulaq

suolauUle) 81epdn _ _ as0|) _ _ ELS _ _ 1odx3 _ _ poduwy _
_ [92UB] _ _ MO _
_ 1n0-bp | ‘ainding
Ellee]
_ A _ 189] olpmg ubisaq _ | UolosuuC) 00 Koo
Inding Asenp sinoexg melrald
_ A _ bp _ gl Aenp 1bs
_ 1bp] al
Assnp snosx3 - Buipuig eleq dlweuAg

slslallesed uoisseldx3 AoojeA _ suonesadQ [2uld

salleny) ainoexg _ SUONIpUOY _ skely __ solenD 1S

g E1R(JIUBUAQ

US 9,430,195 B1

Sheet 17 of 31

Aug. 30, 2016

U.S. Patent

Ll "9l4

suoposuLod ajepdn __ 85010 _l_ ARG __ Jodx3g _l_ podu)

HES

ol
)

UOIBAISILIWIPY 80IN0SBY PUB $S8UISNg

KisapQ 10npoid Bunjueg |iejay

JuswaBeue)y [£osl4

JusLuaBeue)y oljoflod sseuisng

$00IAIOS LONNGLISI YourIg

Juswdojaraq diysuolejay Jowoisna

soleg ¥ B

INJOS JOWOISNY)

o il Rl il il Al Rl

Jusudojeraq sseuisng msN

— || |||~ |

al” AdLSNANI NOILdI42s30a

NOILONNS $SINISNG

QI NOILONNS $SaNIsnd

alnoexg

ndinQ Aisnp 81nasx3 melald p

159) - 0lpnIgU

arnding al uolosuuoy

a1 Ashp enbag

al

_ sIsjaWeled yndu| sjepdn

__ REEl] __ i3 _._ PRy _

saloNg 8Jnoaxg suyaq

sigjoweled

uoissaudx3 AIoojsA _ suoneladg |eul4

SBLIBNYD AIN0OX] _ SUOIPUOD _ shelly _ salsnD TOS

US 9,430,195 B1

Sheet 18 of 31

Aug. 30, 2016

81 "9l4

suoljosULI0Y aepdn _ _ 850[) _ _ aARS _ _ Jodxg _ _ poduwy _
b
nding
[eoue) _ _ pe]
€ Weled
A siuwinjogpsjuspul
“hjodhsuwiniopanbiun T Ueled
[xopu| uwnjopisiquwinioo b
Aeuyaz) WekEd Jndy)
oblapy
o] 8jeoundy arinding
v alndu [—————— ndingAndu suoneiado [puld maiald ~
N 18l adA] uonesadg
v | 18pIQ
suonesadg |eul4 — Buipuig eleq aweudq
£ Weted Zweled | weled alinding alindu| adA| uonessdg _ 19pI10
[oeea || wa |[e |
suoneJado euld sueq

slalsllieled uoissaidxg AjioojeA _ _ suolesadQ |eulq sslany andexy _ suonipuoD _ shedy || seuend TOS

Buipuig eieq oiweuiq

U.S. Patent

US 9,430,195 B1

Sheet 19 of 31

Aug. 30, 2016

U.S. Patent

6/ "9l4

SuoauU0) Blepdn __ 850[0 __ ARG __ podx3 __ yodu _

<JSI-payUly> | 226k

<OAdUBuas) Buipigeyep Bas snidBsp- Alandepe-woo)> vesk
<depjaweuuwnionoAousuab)> 0zsl
<Aus/> 6181
<Bulsf>al” A4LSNAN Butis> 815

s%o
<IaploHisIOARUBUeS) Bulpuigerep Bas snidsp-Alandepe wodj> | ¥esl
<JsNOAHBUsE)> _—
<O A0l8us9) Buipigerep Bas snidbsp Ayandepe woo/> 2251
<depjaeuuwnionOAdLaLab)> L2761
<Aius/> 0251

ndy)

MaIAdId

ndinoandu) suoneiado [ui{ maiasld

£ weled

7 weled

| Weled

alinding qlindy adA] uopessdo 18plo

_ sjelsq __ 3 __ PRy _

suoneledo [euld suysq-

sisjalueled

uoissaldxg AIoopA suofeledo [euid saLleng anoexg _ SUOIPLOD _ shely _ salBny TO8 _

Buipuig ejeq olWeuAq

US 9,430,195 B1

Sheet 20 of 31

Aug. 30, 2016

U.S. Patent

0¢ Oi4

9 Woo
I1
(1007 bpg U1 1eng) 9|gelRA
zlojogaons
) 4 ﬂ L 2 001 0 0=0'0=b"0=. [0=00=b0=1 | “ewoue]-fjweq | (gluwnodieb ieag ENEN 110j003%40.38
x 4 00} 0 0=00=P 0=/ | ewouel=imug | 0=0"0=D"Q=J | ~ewoue1=Ajwey || (1uwnopieb-erg al ony) | suwnjopmoys
_ BIEEN] P Bulpped 1xa 1 punoubaio [le) _ Juod |89 _ 5104 18pEBH _ "yoeg JepesH | ju0d JepesH elgguuwno) | swen uwnpe) ¢iojogmol
|Jojopmol
) PPy ouiey
I I 1011p3’[2POJAPUSX S |epoll
00| WPloHxew
_ o4 _ 1128215 Ufe (=115 B WOUE | =BlUB BLLIOYR] =) _ o4 Japesy | 10j00puG)
10/00pub]
[uod [Tir-sesud=s/iSBWoUE] ~oWeT BWOUE] AWLE][Boln0SaINIIog | juo4 (180 [ro00]| [0=0'0=F =10 meerer | punoisans epean oiwoom”omwo.m x_.ﬁ_uuw,m\”mﬁwm
- — punosBaioy - - — 1009/5pi0g
E_ [0=q0=B Q=100 e EAE 99 [w009 | [667=0'c6z=h'cGg=1].0[0) We erer _ punoibyoeg JapesH o] GoISNIOYOTe
X 193Yg Ayadold
L ﬂ._ 0] Buipped lleo] WPIM JepeaH
_ | (Zuwniogheoierg | ereq uwnion 1osus Ayadoiq
Y
\ [swey | OLBN uwno) o
P
¥ g
$90000.d PUOXL K
Jaydels) malnsld 980 | Jaydess K X Jaio|dx3g 108lqQ juswnaog
e Y E|
disH mopuim $j00L MIIA 1e3 l4

L} Jaydeisy — Jsubiseq 98a Al

US 9,430,195 B1

Sheet 21 of 31

Aug. 30, 2016

U.S. Patent

EN

ai |

X7 1 soydei momaid 980 _ xJ

| toydeig

W®

(1no™ | bpg ur Jeag) ETRETEN

zlojonoyous
Llojonoous

anl) SUWNODMOYS

2i0j00m0!

|ojoomol

aweu

JOUPT'[PPORPHOX| |spowl

008! 1yBraHxew

b IpImPUB
10]00p1ub
xogBuipunoq|

yipigispioq
100218pI0g
JpipIsnipyoine
1o3yg Auadoid

[PLOXA]

Jauo(dx3 108lqQ Juswnoog

2o E

dieH

MOPUIM sjooL MIIA 3 slid

.| Jaydeis - 1eufiseq osa Alandepy

TADE |

US 9,430,195 B1

Sheet 22 of 31

Aug. 30, 2016

U.S. Patent

awlio Buinossod
pue funosiag

144

ERNERTEN]
Buibeuely

g

Buiiodey

a4

St

suojesedQ

0F

Burpes|

6t

soleg

8¢

LonesIuIWpY
80In080Y
pue ssauisng

Kianip(10npoud
Buiyueg |eloy

JalusBeuey
[B1oUBUI4

swabeuepy
ojjofiiod sseuisng

SE0INBS
uognausia
2 Youelg

juswdoppaag
diysuoneiey
Jsuioisn)

198ys Auedold

soesS R
Bujoimag Jowoisny

juawdoppasg
ssoujsng maN

SLUEN

al

| Jaydels mamaid 98a _

| Jaydeigy

188 DAl

v

Jau0/dxg 30800 JueWwngoq

@

dieH

AMOPUIA

sjooL MaIA p3

.| Jaydeisy —sufissqg ogq Al

ol

¢¢ 94

US 9,430,195 B1

Sheet 23 of 31

Aug. 30, 2016

U.S. Patent

£€¢ "9l4

<BAas/>

<Bf>

<puBxy:Bsp/>

<uwn|ooxy):Bsp/>

<Ixa)Bsp/>

(z)uwnjoDyabieng

<.09.=A ,0.=X .00 L. =}IpIm

. 1 L.:9ZIs-Juojewaye] :Ajlwejjuoy,=ajA1s1xa) ,0,=bulppedixal ,sucu:axaisiauou:||ly, =o]A1s1091 1xay:Bsps>
<400 L, =UIPIM , 0000007 SNONS JUIHE (I}, =8I A)S

LJJNVYN.=8WEeU | |:9ZIS-Jucy Blioye | :Ajiwe-juo),=s|A1siapeay uwnjoox}:6sps>

<uwn|ooxy):Bsp/>

<pxa)Bsp/>

(1)uwnjonyehiea

<.09.=A ,0.=X .00 L. =L}pIM

. 1 L.:9ZIs-Juojewaye] :Ajlweljuoy,=ajA1s1xa) ,0,=Bulppedixal ,sucu:ayaisiauou:||ly, =o]A1s1001 1xay:Bsps
<400 Lu=UIPIM 0000007 SHONS HIMH (I}, =8IRS

.al,=8WEu ‘| | :8ZIs-juo) ewoye] Ajlweljuoy, =ajAlsiepesy uwnjoox):Bsp><,09,=A ,0%.=X .00E.=LUIPIM
(1IN0~ Lbpg ul JeAg),=teA BN, =S|03MOUS ,,000000#:%0NS #0000 00#:930118:099209§, =SI0[0IMO
400S,=uBiyxew 0% ,=BIay | \UipiM-83011s:000000% - 0Ns, =3l Assapiog pubxyBsps><, 0 1ake],=p! 6>
<Buipuigeyeq:Bsp/>

</sisleweled:Bsp>

<uolssaidxgAuooleAwoIsnd:Bsp/><--||nu-—j><uolssaidx3Aooja Awoisn):Bsps
<suonesadQJaploH:Bsp/>

</w=Ewelsed , =zweled

w=lwelred no~ Lbp,=ppndno ,|.=1opio 3si|,=adAuoneiado ,1no-bp,=pnndul uoneisdQuisploH:Bsps>
<suonesadQiaploH:6sp>

<Sauanpanoax3:bsp/>

<Manpsindex3:6sp/>

</slaloweredindu):Bsps

<,bp.=plfanibs ,Jno-bp,=ppndino , L bp,=p! 19} - olpmSubisap,=p|uoposuuod Alanpanosxy:Bsps
<salanpaInoex3:Hsp>

</suonipuo):Bsp>

</shelryuwnion):6Gsp>

<sapanp|bg:Bsp/>

<Kanpibg:Bspy><[[suonouny ssauisng wolj , 198]9s]v 1 vadli><.bp.=p! Aenp|bg:Bsps>
<sspsnp|bs:Bsp>

<.Bsp/01 0z/BI10 Aiandepe maw//:dny,=Bsp:sujwx Buipuigeyeq:Bsp>

<. ¥ZZ1.,=UIPIM ,0°26.£ 0'722ZL 0'0 0'0.=X0gMaIA ,Z6/,=UBIdY JUIX/666 | /BI0°EM mMmM//:dRy, =5 UlIX SUJWX
Bsp/oLoz/Bio Alandepe mmm/f.dny, =Bsp:sujwx ,Bas/0002/B10° Sm mmm//:dny,=sujwx Bas>
<,8-41N,=Buipoous 0| ,=UOISIBA WX >

US 9,430,195 B1

Sheet 24 of 31

Aug. 30, 2016

U.S. Patent

Vve "Old

XXX XXX
XXX XXX
XXXXXY XXXXXK
XXXX XXXX

XXX
XXX
XXXXXX
XXXX
_ —
XXX XXX XXX
XXX XXX XXX
XK XXXXXX XXXXXX
XXXX XXXX XXXX
XXX XXX
XXX XXX
XXXXXX XXXXXX
XXXX XXXX

US 9,430,195 B1

Sheet 25 of 31

Aug. 30, 2016

U.S. Patent

XXX
XXX
XXOOCK
XXXX
XXX
XXX
XOOOKX
XXXX
XXX
XXX
XXXXXX
XXX

‘/

8rZ Ol4

XXX
XXX
XXX
XXXX

XXX

XXX

XXXXXX

XXXX

\\\\\‘

XXX
XXX
XXXXXY

XXXX

XXX XXX
XXX XXX
XXXXXY XXXXXX
XXXX XXXX
XXX XXX
XXX XXX
XXXXXX XXXXXX
XXXX XXXX

[=

US 9,430,195 B1

Sheet 26 of 31

Aug. 30, 2016

U.S. Patent

Iv¢ “Ol4

XXX XXX XXX
XXX XXX XXX

XXXXXX XXXXXX XXXXXX

XXXX XXXX XXXX

XXX XXX XXX

XXY XXY XX¥

XXXXXX XXXXXX XXXXXX

XXXX XXXX XXXX

XXX XXX XXX XXX
XXX XXX XXX XXX
XXXXXX XXXXXY XXXXXX XXXXXY
XXXX XXXX XXXX XXXX

US 9,430,195 B1

Sheet 27 of 31

Aug. 30, 2016

U.S. Patent

10 Ul Jerg s|qeueA

= sopeoiBojodo | spienbiun
JnoAejwopuey Aullojsueny
0Ae1981] [elpey XUwiojsuel)
Aeleoyoressiy MOLIYMOUS
nofepuo AS[EDS)

OAETJIE NCIEAS)
INoABTSNg —~

- elpeyBunewss)ly B
AN edyoIeBIy adf]Ino
008 sabpa

00¢ YIpIpuaIuoo

005 JuBIBHUSU0D

00£:081-08-01

xogBuipunoq

6¢ "Old

US 9,430,195 B1

Sheet 28 of 31

Aug. 30, 2016

U.S. Patent

181004

§90

paule(19sn |]

IAIBS [BI00S

i

uslUIBACD)

Bupjueg |ejey

zw{m_z euden

aWeN

g
/]

Nﬁ’@

o]

JapesH

9¢ 9l4

U.S. Patent Aug. 30,2016 Sheet 29 of 31 US 9,430,195 B1

<
)
o))
®
o
<
™
)
o))
®
o
<
[a\
1)
o))
©
o
<
m
-
1)
o)
©
o
<

FIG. 27A

U.S. Patent Aug. 30,2016 Sheet 30 of 31 US 9,430,195 B1

m
<
)
o))
®
o
<
m
™
)
o))
®
o
<
m
[a\
1)
o))
©
o
<
m
-
1)
o)
©
o
<

FIG. 27B

U.S. Patent Aug. 30,2016 Sheet 31 of 31 US 9,430,195 B1

Image

SVG, PDF and

DSG Engine

“Key 1= value
Key 2 = value

FIG. 28

US 9,430,195 Bl

1
DYNAMIC SERVER GRAPHICS

CROSS-REFERENCE TO RELATED
APPLICATION

The present application is a U.S. nonprovisional patent
application of, and claims priority under 35 U.S.C. §119(e)
to, U.S. provisional patent application Ser. No. 61/342,651,
filed Apr. 16, 2010, which provisional patent application is
hereby incorporated by reference herein.

COPYRIGHT STATEMENT

All of the material in this patent document is subject to
copyright protection under the copyright laws of the United
States and other countries. The copyright owner has no
objection to the facsimile reproduction by anyone of the
patent document or the patent disclosure, as it appears in
official governmental records but, otherwise, all other copy-
right rights whatsoever are reserved.

BACKGROUND OF THE INVENTION

The present invention generally relates to graphics gen-
eration, such as, for example, techniques for dynamically
serving vector graphics that include characteristics drawn
from dynamic data.

The process of dynamically generating HTML pages has
been common industry practice since 1997. Examples of this
page server technology are Oracle™’s Java™ Server Page
(ISP™) technology and Microsoft™’s Active Server Page
(ASP™) technology. These technologies allow a program-
mer to write code that is processed by a server engine to
control the generation of HTML and CSS. This code is
generally referred to as server-side code, is embedded within
traditional HTML and CSS page markup, may draw on
external resources such as a database, and is in effect a web
template that is executed upon request of a client browser.
Each page server technology has its own programming
constructs which amount to a proprietary standard that
describe engine instructions; however, the resulting output is
based on generating HTML and CSS standard compliant
output as defined by the various World Wide Web Consor-
tium (W3C) standard committees.

Although the generation of these web templates allows
page authors to generate dynamic presentations of data with
relative ease, these technologies are oriented toward the
formatting of text pages with graphics presentation limited
to referencing images, not the dynamic creation of graphics
themselves.

There are many application programming interfaces
(APIs) that support the creation of graphics programmati-
cally. Oracle’s Java2D™ and Microsoft’s Graphic Device
Interface (GDI™) are two examples. These technologies
support the programmatic creation of vector graphics. How-
ever, these interfaces are very granular and difficult to use
(e.g., they may require programmatic instructions such as
draw a line from point x1,y1 to x2,y2). This limits their
industry use as foundational components that are leveraged
by various drawing tools; they are not frequently used
directly to develop dynamic graphic generation solutions
due to the time intensive nature of such efforts and the
related expense.

Various abstractions have been developed to provide a
more manageable interface for the development, storage,
and presentation of vector graphics. Most of these technolo-
gies are rooted in eXtensible Markup Language (XML).

10

15

20

25

30

35

40

45

50

55

60

65

2

Examples of such technology include the Web Hypertext
Application Technology Working Group’s (WHATWG)
Scalar Vector Graphics (SVG) and the proposed W3C Vector
Markup Language (VML). SVG is the vector graphic analog
to what HTML is to web pages. SVG uses XML tags to give
a high-level description of instructions that can be inter-
preted by a SVG Interpreter to render a vector graphic image
via low-level APIs, such as Java2D or GDI. SVG based
images are generally created via SVG-based drawing tools,
much like how HTML pages are created via HTML editors.
The user of such tools is usually unaware of the underlying
data’s representation in XML. While the use of standard
XML programming techniques to programmatically
manipulate the underlying data structures of a vector graphic
described via XML (e.g., via SVQG) is possible, it is also a
time intensive and costly process to develop solutions with.

To facilitate the editing of HTML to introduce server-side
code, there is a design paradigm that allows the implementer
to transition between views of different visualizations. These
views include visualizations of raw HTML tags with server-
side code, a design view that allows manipulation of under-
lying HTML, and a preview of a generated HTML visual-
ization. This design paradigm facilitates multiple
perspectives of the pieces that render the final output result.
In vector graphic development tools, visualization is limited
to drawing tools and static output. Adding programmatic
manipulation of underlying XML is a separate task that
happens within a coding tool. An integrated approach to
manipulating vector graphics, such as those used in HTML
development paradigms, does not exist, nor do traditional
approaches to the creation of vector graphics easily fit this
development model.

Unlike HTML, which has complex presentation layout
constructs such as Tables or Lists, XML vector languages
are limited to basic primitives such as Rectangles, Ellipses,
or Text descriptors. The absence of these layout constructs
further compounds the difficulty of programmatically cre-
ating complex vector graphics.

Adobe’s Flex™, Flash™, and Shockwave™ products do
provide the means to programmatically manipulate vector
graphics, but with a focus on vector animation. The mapping
of data directly into vector graphic presentation can be
accomplished, but with the use of proprietary low-level APIs
and a scripting language. Similar to the XML vector lan-
guages, Adobe’s proprietary approach is limited to basic
drawing primitives with the addition of the integrated pro-
gramming interface. The creation of the vector image itself
is regulated to the use of drawing canvas such that each
element must be drawn by hand or via low-level API calls,
which is a time consuming process that requires a rare mix
of graphical and programming talent, both of which can be
prohibitively expensive for many implementations. These
solutions do not supply complex compound primitives or
high-level layout constructs needed to facilitate the rapid
development of programmatic generation of vector graphics
without having to use low-level API calls.

A need exists for improvement in dynamic graphic cre-
ation. This, and other needs, are addressed by one or more
aspects of the present invention.

SUMMARY OF THE INVENTION

The present invention includes many aspects and features.
Moreover, while many aspects and features relate to, and are
described in, the context of dynamic vector graphic creation,
the present invention is not limited to use only in this
context, as will become apparent from the following sum-

US 9,430,195 Bl

3

maries and detailed descriptions of aspects, features, and one
or more embodiments of the present invention.

Accordingly, one aspect of the present invention relates to
a method of rendering a dynamic graphic utilizing a vector
graphics engine. The method includes receiving, at a vector
graphics engine loaded on a computing device, a graphic
template; receiving, at the vector graphics engine loaded on
the computing device, a data template; binding, in a data
binding process executed by a processor of the computing
device, data identified via the data template to vector graphic
content identified by the graphic template; and generating,
by the processor of the computing device, vector graphic
output that conforms to a particular format, the vector
graphic output including the bound data identified via the
data template in vector graphic form in accordance with the
graphic template.

In a feature of this aspect, the particular format that the
vector graphic output conforms to is the scalable vector
graphic (SVG) standard.

In a feature of this aspect, the graphic template comprises
a plurality of other graphic templates.

In a feature of this aspect, the graphic template comprises
a plurality of other graphic templates associated together in
an embedded hierarchy.

In a feature of this aspect, the method includes a step of
parsing, by the vector graphics engine loaded on the com-
puting device, source for one or more tags existing in a
special namespace. In at least some implementations, the
method includes a step of matching such one or more tags
to one or more complex compound primitives programmati-
cally enabled within the vector graphics engine loaded on
the computing device.

In a feature of this aspect, the vector graphics engine
loaded on the computing device is configured to convert
code representative of high level constructs into the particu-
lar format. In at least some implementations, the high level
constructs include an array construct, grid construct, list
construct, and/or stack construct.

In a feature of this aspect, the vector graphics engine is
configured to pass through markup standard to the particular
format.

In a feature of this aspect, the computing device is
connected to a network. In at least some implementations,
the vector graphics engine loaded on the computing device
is configured to process received data asynchronously. In at
least some implementations, the vector graphics engine
loaded on the computing device is configured to process
received data synchronously.

Another aspect of the present invention relates to a
method of dynamically generating a graphic. The method
includes receiving, at a vector graphics engine loaded on a
server system, graphic template input; receiving, at the
vector graphics engine loaded on the server system, data
template input; and generating, at the server system, code in
a standard format representative of a vector graphic. The
generating includes identifying a special tag associated with
the vector graphics engine, converting code associated with
this tag from a first format associated with the vector
graphics engine to a second standardized format, and bind-
ing data content based on the received data template input to
graphic content based on the received graphic template
input.

Another aspect of the present invention relates to a
method for a tool for facilitating creation of dynamic graph-
ics. The method includes receiving, at a computing device,
information regarding a connection to a data source input by
a user via a user interface utilizing one or more input

20

25

30

35

40

45

4

devices; receiving, at the computing device, a query input by
a user via a user interface utilizing one or more input
devices; receiving, at the computing device, an indication of
an executable query input by a user via a user interface
utilizing one or more input devices, the indication including
reference to the inputted information regarding a connection
to a data source and reference to the inputted query; receiv-
ing, at the computing device, an indication to place a graphic
component on a canvas, the indication to place a graphic
component on a canvas being input by a user via a user
interface utilizing one or more input devices; receiving, at
the computing device, an indication to associate data obtain-
able via the executable query with the graphic component,
the indication to associate such data being input by a user via
a user interface utilizing one or more input devices; display-
ing, utilizing an electronic display coupled to the computing
device, a user interface comprising a preview of the graphic
component including data obtained via the executable query;
and generating, at the computing device, code configured to
allow for the later display of the graphic component includ-
ing data dynamically obtained from the data source.

Another aspect of the present invention relates to a
computer readable medium having software loaded thereon
comprising instructions for executing one or more methods
disclosed herein.

In addition to the aforementioned aspects and features of
the present invention, it should be noted that the present
invention further encompasses the various possible combi-
nations and subcombinations of such aspects and features.
Thus, for example, any aspect may be combined with an
aforementioned feature in accordance with the present
invention without requiring any other aspect or feature.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more preferred embodiments of the present inven-
tion now will be described in detail with reference to the
accompanying drawings, wherein the same elements are
referred to with the same reference numerals, and wherein:

FIG. 1 is a high-level flow chart depicting an exemplary,
preferred approach for inputs into a vector graphics engine,
process steps within the vector graphics engine, and output
result of the vector graphics engine;

FIG. 2 illustrates a graphic template’s ability to include
external files including other graphic templates and standard
vector graphic XML (e.g. SVG);

FIG. 3 illustrates exemplary conversion of a complex
compound primitive into scalable vector graphic format;

FIGS. 4-7 illustrate exemplary conversion of high-level
layout constructs into scalable vector graphic format;

FIG. 8 illustrates exemplary input which may be fed into
a vector graphic engine;

FIG. 9 illustrates exemplary output from the vector
graphic engine based on the exemplary input illustrated in
FIG. 8,

FIG. 10 illustrates an image engine representing an exem-
plary vector graphic engine;

FIG. 11 is a flowchart illustrating the use of the image
engine of FIG. 10 to create a graphic;

FIG. 12 illustrates how the image engine of FIG. 10 might
be utilized in the context of a request associated with a
vector graphic template;

FIG. 13 illustrates an exemplary editor configured to
allow for the easy creation of dynamic graphics and code
therefor;

US 9,430,195 Bl

5

FIG. 14 illustrates a user interface that allows a user to
define connections by selecting a database driver, a database
location, or URL, and provide authentication credentials for
the database;

FIG. 15 illustrates a user interface of the editor which can
be utilized to define a query and assign a query ID thereto;

FIG. 16 illustrates a user interface of the exemplary editor
which can be utilized to identify a query ID and a connection
1D;

FIG. 17 illustrates how a user interface allows for a
preview of execute query output for a particular query on a
particular connection;

FIG. 18 illustrates a user interface that allows a user to
select an operation, and identify operation input and output
1Ds;

FIG. 19 illustrates a preview of generated code both prior
to, and subsequent to, modification in accordance with a list
operation;

FIG. 20 illustrates how a variable property can be asso-
ciated with the output from an operation;

FIG. 21 illustrates a tab displaying a component defined
via the user interface of FIG. 20;

FIG. 22 illustrates a tab displaying a dynamic preview of
a component rendered with data from a source;

FIG. 23 illustrates source code for a grid component;

FIGS. 24A-C illustrates the same data displayed in three
different layouts;

FIG. 25 illustrates how a layout can be selected utilizing
a layout type property;

FIG. 26 illustrates the use of header and footer images;

FIGS. 27A-B illustrate the use of paginated controls; and

FIG. 28 illustrates how code input, input from a data
source, and a parameter map can be utilized by a dynamic
server graphic engine to generate output.

DETAILED DESCRIPTION

As a preliminary matter, it will readily be understood by
one having ordinary skill in the relevant art (“Ordinary
Artisan™) that the present invention has broad utility and
application. Furthermore, any embodiment discussed and
identified as being “preferred” is considered to be part of a
best mode contemplated for carrying out the present inven-
tion. Other embodiments also may be discussed for addi-
tional illustrative purposes in providing a full and enabling
disclosure of the present invention. As should be understood,
any embodiment may incorporate only one or a plurality of
the above-disclosed aspects of the invention and may further
incorporate only one or a plurality of the above-disclosed
features. Moreover, many embodiments, such as adapta-
tions, variations, modifications, and equivalent arrange-
ments, will be implicitly disclosed by the embodiments
described herein and fall within the scope of the present
invention.

Accordingly, while the present invention is described
herein in detail in relation to one or more embodiments, it is
to be understood that this disclosure is illustrative and
exemplary of the present invention, and is made merely for
the purposes of providing a full and enabling disclosure of
the present invention. The detailed disclosure herein of one
or more embodiments is not intended, nor is to be construed,
to limit the scope of patent protection afforded the present
invention, which scope is to be defined by the claims and the
equivalents thereof. It is not intended that the scope of patent
protection afforded the present invention be defined by
reading into any claim a limitation found herein that does not
explicitly appear in the claim itself.

15

20

25

30

35

40

45

50

55

60

65

6

Thus, for example, any sequence(s) and/or temporal order
of steps of various processes or methods that are described
herein are illustrative and not restrictive. Accordingly, it
should be understood that, although steps of various pro-
cesses or methods may be shown and described as being in
a sequence or temporal order, the steps of any such processes
or methods are not limited to being carried out in any
particular sequence or order, absent an indication otherwise.
Indeed, the steps in such processes or methods generally
may be carried out in various different sequences and orders
while still falling within the scope of the present invention.
Accordingly, it is intended that the scope of patent protection
afforded the present invention is to be defined by the
appended claims rather than the description set forth herein.

Additionally, it is important to note that each term used
herein refers to that which the Ordinary Artisan would
understand such term to mean based on the contextual use of
such term herein. To the extent that the meaning of a term
used herein—as understood by the Ordinary Artisan based
on the contextual use of such term—differs in any way from
any particular dictionary definition of such term, it is
intended that the meaning of the term as understood by the
Ordinary Artisan should prevail.

Regarding applicability of 35 U.S.C. §112, 96, no claim
element is intended to be read in accordance with this
statutory provision unless the explicit phrase “means for” or
“step for” is actually used in such claim element, whereupon
this statutory provision is intended to apply in the interpre-
tation of such claim element.

Furthermore, it is important to note that, as used herein,
“a” and “an” each generally denotes “at least one,” but does
not exclude a plurality unless the contextual use dictates
otherwise. Thus, reference to “a picnic basket having an
apple” describes “a picnic basket having at least one apple”
as well as “a picnic basket having apples.” In contrast,
reference to “a picnic basket having a single apple”
describes “a picnic basket having only one apple.”

When used herein to join a list of items, “or” denotes “at
least one of the items,” but does not exclude a plurality of
items of the list. Thus, reference to “a picnic basket having
cheese or crackers” describes “a picnic basket having cheese
without crackers”, “a picnic basket having crackers without
cheese”, and “a picnic basket having both cheese and
crackers.” Finally, when used herein to join a list of items,
“and” denotes “all of the items of the list.” Thus, reference
to “a picnic basket having cheese and crackers” describes “a
picnic basket having cheese, wherein the picnic basket
further has crackers,” as well as describes “a picnic basket
having crackers, wherein the picnic basket further has
cheese.”

The use of relative terms, such as “substantially”, “gen-
erally”, “approximately”, and the like, may be utilized
herein to represent an inherent degree of uncertainty that
may be attributed to a quantitative comparison, value, mea-
surement, or other representation. These terms also may be
utilized herein to represent the degree by which a quantita-
tive representation may vary from a stated reference without
resulting in a change in the basic function of the subject
matter at issue.

Notably, any references herein to advantages, benefits,
unexpected results, or operability are not intended as an
affirmation of previous reduction to practice or testing.
Likewise, unless stated otherwise, use of verbs in the past
tense (or present perfect or preterit usage) is not intended to
indicate or imply previous reduction to practice or testing.

Referring now to the drawings, one or more preferred
embodiments of the present invention are next described.

US 9,430,195 Bl

7

The following description of one or more preferred embodi-
ments is merely exemplary in nature and is in no way
intended to limit the invention, its implementations, or uses.

One or more aspects of the present invention relate to a
vector graphic engine that is able to consume graphic
templates as guides to generate dynamically assembled
vector graphics that incorporate complex compound primi-
tives, high-level layout constructs, and data discovered/
applied during the generation process via programmatic
rules defined by an implementer.

In some preferred implementations, when a vector
graphic engine request is invoked, a request object specify-
ing a graphic template and a data template are passed into
the vector graphic engine for processing according to
embedded organizing controls and programmatic instruc-
tions. The vector graphic engine response is a well formed
XML response, i.e. an XML response that conforms to a
defined XML schema, compliant with the implemented
vector graphic standard, such as, for example, the scalable
vector graphic (SVG) standard.

FIG. 1 illustrates a vector graphics engine 101 in accor-
dance with one or more preferred implementations. As
illustrated, the vector graphics engine 101 is configured to
take as input a graphic template 102 and a data template 103.

The vector graphics engine 101 includes a graphic tem-
plate parser 105. When a graphic template 102 input is
received at the vector graphics engine 101, it is fed into the
graphic template parser 105 as input. The graphics template
parser 105 consumes the input, processes any included file
references, converts any complex compound primitives into
one or more corresponding properly formatted standard
XML vector graphic (e.g. SVG) counterparts, identifies
various service-side code constructs to relate with run-time
code objects, executes any pre-binding run-time code
objects, and readies all binding variables for processing in a
next stage of processing, namely a data binding process 108.

The vector graphics engine 101 further includes a data
template parser 106. When a data template 103 input is
received at the vector graphics engine 101, it is fed into the
data template parser 106 as input. The data template parser
106 consumes the input; identifies various data sources,
queries, and transformations from the content; reads any
necessary data from specified data sources 107; and readies
retrieved data for processing in the next stage of processing,
namely the data binding process 108.

The data binding process 108 combines execute service-
side code instructions to bind various elements of data to the
vector graphic XML (e.g. SVG) content of the graphic
template 102 with the data identified from the data template
103. This data bind process 108 produces an interim result
that is fed into a layout and scaling process 109, which
executes instructions as defined by the high-level layout
constructs, including associated scaling, and executes any
post-binding run-time code objects. The resulting output is
a generated vector graphic 104 output that conforms to the
preferred XML vector graphic specification (e.g. SVG).

As depicted in FIG. 2, a graphic template 102 may include
another graphic template 201 or other XML vector graphic
202. A graphic template can thus be characterized as being
embeddable within another graphic template. A single
graphic template might be reused in a plurality of other
graphic templates, thus graphic templates can be character-
ized as being reusable. Accordingly, the use of graphic
templates allows for the creation of reusable and embed-
dable hierarchies. A graphic template, or image, included

10

15

20

25

30

35

40

45

50

55

60

65

8

within a graphic template may be included with or without
a scale transformation depending on the implementer’s
requirements.

As noted above, during the graphic template parser 105
execution, conversion of complex compound primitives into
properly formatted standard XML vector graphic tags (e.g.
SVG) takes place. FIG. 3 depicts an example of conversion
of a formatted text compound primitive into standard SVG
objects.

FIG. 3 illustrates exemplary dynamic server graphic
(DSG) source utilizing a formatted text compound primitive.
When this source is parsed by the graphic template parser
105, because the <dsg:ftext> tag (or <vge:formattedtext>,
for vector graphic engine (VGE) in at least some implemen-
tations, etc.) is not a standard SVG tag and exists in a special
namespace, the parser looks for a matching complex com-
pound primitive that has been programmatically enabled
within the vector graphic engine 101.

This source is converted into SVG output, as illustrated,
although in at least some other implementations the source
may be converted into other output. The SVG output pref-
erably uses only standard SVG tags, with all server-side tags
preferably being, already having been, or later being, con-
verted and removed from the output. This allows for sophis-
ticated output formatting through the use of compact custom
tags that expand to the appropriate standard SVG tags.

FIG. 3 also depicts a visualization of the resulting output,
as well as calculations needed to determine the output.

Notably, this formatted text example is merely exemplary
in nature, and is representative of one of many possible
complex compound primitives. Each complex compound
primitive may be implemented via a code behind class in the
vector graphics engine 101 and support inheritance such that
additional layouts can be created and/or extended as needed.

Further, as noted above, during the layout and scaling
process 109 execution, the conversion of high-level layout
constructs into properly formatted standard XML vector
graphic tags (e.g. SVG) takes place. FIGS. 4, 5, 6, and 7
depict, respectively, the conversion of array, grid, list, and
stack constructs into standard SVG objects. In the illustrated
implementations, the array and grid constructs include
evenly distributed same size cells, while the stack construct
includes evenly distributed variable size cells.

Each figure includes exemplary DSG source utilizing,
respectively, an array, grid, list, or stack construct. In each
case, the source is similarly parsed and associated with a
matching high-level layout construct as described above
with respect to the conversion of a compound primitive into
standard SVG objects.

Such source is converted into SVG output, as illustrated.
The SVG output preferably uses only standard SVG tags,
and the inner coordinate system of the cells preferably is, has
been, or will be scaled and translated to map into the outer
coordinate system. Preferably, all server-side tags are, have
been, or will be converted and removed from the output.
This allows for sophisticated output formatting through the
use of compact custom tags that expand to the appropriate
standard SVG tags.

FIGS. 4-7 also depicts a visualization of the resulting
output, as well as the calculations needed to determine the
output.

As with the formatted text example, the array, grid, list,
and stack examples are merely exemplary in nature, and are
representative of but a few of many possible high-level
layout constructs. Each layout construct, or control, may be
implemented via a code behind class in the vector graphics

US 9,430,195 Bl

9

engine 101 and support inheritance such that additional
layouts can be created and/or extended as needed.

FIG. 8 illustrates sample inputs that includes an exem-
plary graphical template and data from an exemplary data
source.

The exemplary graphical template contains a stack layout
construct and a formatted text complex compound primitive
along with data binding variables (e.g., “$var” and “$list”).
The data from the exemplary data source contains a list of
items to be used during the data binding process 106
described above.

FIG. 9 depicts exemplary output derived from the inputs
of FIG. 8. The output preferably includes SVG output and a
rendered visualization.

As illustrated, the SVG output is fully expanded with the
integrated content shown embedded within the SVG con-
tent. Further, the stack and formatted text objects have been
converted to the appropriate SVG primitives and scaled
appropriately to fit within the bounding constraints defined
in the stack definition. The rendered visualization shows
how the stack dynamically adjusted itself to fit the varying
length of the text strings without an implementer needing to
take any special actions.

Notably, in preferred implementations, the length of
server-side code required to be written by an implementer is
significantly smaller than the expanded SVG version. In at
least some preferred implementations, this dramatically
reduces the number of lines of source materials that need to
be maintained, and may provide significant cost savings.
Any changes to the stylization of one stack cell could affect
the entire rendering, thus allowing stylistic changes to be
implemented quickly. Preferably, the entire rendering pro-
cess takes place without the implementer having to write any
low-level API drawing methods (e.g. Window’s GDI+ or
Java 2D).

Preferably, the vector graphic engine 101 only operates on
tags it has been programmatically enabled to process, there-
fore any standard markup in the graphical template 702 is
automatically passed through; for SVG, this includes all
standard tags including primitives, CSSs, standard includes,
and client-side scripting. The native advanced capabilities of
SVG to support CSSs, client-side scripting, etc. are prefer-
ably left to the sole purview of the implementer, although in
at least some preferred implementations they may not be. In
at least some preferred implementations, the vector graphic
engine 101 is extendable to include concepts of caching,
state, and smart navigation such as may be found on various
application servers (e.g. ASP and JSP).

The vector graphic engine 101 can have a physical
instantiation as a machine connected to a network. The
transport technology is not specific to systems and processes
described herein, and would, for example, support simple
connection based protocols, such as IBM’s Systems Net-
work Architecture (SNA) or TCP/IP socket protocol. Data
sent to, or received from, the vector graphics engine can be
processed asynchronously, through message queuing, such
as via Java Message Service (JMS), or asynchronous
Remote Procedure Calls (RPC). By inclusion of the graphi-
cal template and data source, the system would run without
manual intervention.

These basic capabilities will allow the technology to
render dynamic images, which reflect data values set at
run-time, while enabling a configuration interface that facili-
tates rapid development by a developer having a graphically
inclined skill set, without the need for a seasoned program-
mer.

15

20

25

35

40

45

55

10

In one or more preferred implementations, a vector
graphic engine is configured to generate output in .svg, .pdf,
Jjpeg, and/or .png format.

FIG. 10 illustrates an image engine representing another
exemplary vector graphic engine. The image engine
includes a parsing and processing module, which is config-
ured to take as an input a graphic template in the form of a
.dsg component, which may comprise source, e.g. source
contained in a .dsg file. The parsing and processing module
reads the input .dsg component and generates a .vim com-
ponent.

The image engine further includes a data engine module,
which is configured to take as input a data template in the
form of an .xml component. The data engine module is
further configured to read a database. Based on the input
xml component, and data from the database, the data engine
module generates a .xml data component.

The imagine engine still further includes a velocity
engine, which is responsible for data binding processing.
The velocity engine processes the .vm component generated
by the parsing and processing module, and, referencing the
xml data component generated by the data engine module,
generates an unscaled .svg component. The image engine
still yet further includes a scaling module which processes
this .svg component and generates a final .svg component.

FIG. 11 is a flowchart illustrating the use of such image
engine to create a graphic comprising three rectangles with
text inside suspended over an ellipse having text inside. As
illustrated in FIG. 11, a first dynamic server graphic com-
ponent, or .dsg component, representing an array is pro-
cessed by an image engine which references an extensible
markup language data component, or .xml component, to
generate a first scalable vector graphic component, or .svg
component, which describes an array of rectangles filled
with text, as illustrated.

Another .dsg component includes both the generated first
.svg component and another .svg component which
describes an ellipse filled with text. The .dsg component
describes the relationship between the content described by
each .svg component, specifically, that the content described
by the first .svg component is to be located atop the content
described by the second .svg component, as illustrated.

This second .dsg component is processed by an image
engine which references an .xml component to generate a
final .svg component, which describes three rectangles filled
with text atop an ellipse filled with text, i.e. contains scalable
vector graphic instructions for the creation of such an image.

FIG. 12 illustrates how such an image engine might be
utilized in the context of a request associated with a vector
graphic template. This process is similar to the process of
parsing a request at a page compiler for processing by an
engine DLL, as illustrated in FIG. 12.

In one or more preferred implementations, graphic tem-
plates provide a number of useful functions, such as, for
example, the ability to organize traditional XML vector
markup, to support late binding of code objects identified by
custom XML tags, to incorporate high-level layout con-
structs to be converted into complex graphical representa-
tions made up of standard XML primitives, to organize
server-side programmatic instructions to the vector graphic
engine, and to designate appropriate data bindings from
dynamically acquired data sources to XML graphic primi-
tives (e.g. rectangle, ellipse, text, etc.). A graphic template
can be characterized as a holistic and abstract guide that
defines parameters and behaviors for how the graphics to be
rendered, and also supplies programmatic instructions to the
vector graphic engine (as illustrated in FIG. 3 hereinbelow).

US 9,430,195 Bl

11

Since a graphic template incorporates high-level layout
constructs, in at least some preferred implementations, much
of the low-level API implementation steps required in a
traditional approach are eliminated. Exemplary high-level
layout constructs include group layout controls, such as
arrays, grids, and stacks, as well as complex compound
primitives, such as text with primitive boundaries (e.g. text
encapsulated by a rectangle), text lists, and complex for-
matted text (e.g. a word wrapped paragraph). Some exem-
plary behaviors of these high-level layout constructs have
been described herein. Each high-level layout construct may
provide complex, yet standardized behavior. For example,
an array construct group can replicates a group of other
graphic primitives in ordered evenly spaced cells, similar to
how an HTML table is made up of cells with nested HTML
primitives. However, the detailed behaviors of the high-level
layout constructs in a graphic context are very different than
traditional HTML layout concerns. For example, it is very
typical for graphical objects to overlap for specific visual
effects, whereas this is generally undesirable behavior for
HTML pages. The high-level layout constructs have the
added benefit of abstracting away the lower-level calls
required to manipulate the underlying XML or the granular
drawing APIs.

The vector graphic engine is preferably extensible, such
that additional high-level layout constructs can be created as
needed, and therefore it is preferably possible to define
additional graphic behaviors and their implementations as
needed. FIGS. 3-7 illustrate a variety of possible implemen-
tations—each is a unique extension of the vector graphic
engine. The possibilities are limited only to the ability of the
implementer to mathematically model the extensions.

Preferably, a vector graphic engine is able to adjust
complicated scale factors as needed to adjust for layouts,
eliminating concerns of complicated math on behalf of an
implementer. High-level layout constructs may contain mul-
tiple primitives that are laid out in a repeated pattern (e.g.,
see the array construct illustrated in FIG. 4). To fit the outer
layout constraints imposed on the layout construct, the inner
content’s size must be scaled to fit within the available
space. This reduces complexity in graphic templates by
enabling an implementer to work in multiple scales simul-
taneously without concern for manual scale conversion as
object size and placement are relative to other objects in the
same bounded area.

The use of these high-level layout constructs allows for
the creation, and use, of tools which allow a user to create
and edit graphic templates with various views to simplify the
programming task. These tools preferably include a visual-
ization of raw XML graphic tags (e.g. SVG) with server-side
code, a design view that allows manipulation of the under-
lying XML graphic tags, and a preview of the generated
graphic visualization. In a preferred implementation, one of
these tools generally resembles IBM ILOG IViews software,
and/or utilizes one or more ILOG libraries.

FIG. 13 illustrates an exemplary DSG editor configured to
allow for the easy creation of dynamic graphics and code
therefor. FIG. 13 illustrates a user interface of the editor
utilized for placement of a FxGrid DSG component. The
interface includes a panel displaying, and allowing editing
of, a plurality of properties of the component, as illustrated.

The exemplary editor of FIG. 13 allows for the use of data
from various data sources, such as, for example, MySQL,
MSSQL, Data Access Layer POJO objects (e.g. to provide
data access without providing direct access to obviate secu-
rity issues), web services, or object databases. FIG. 14
illustrates a user interface that allows a user to define

10

15

20

25

30

35

40

45

50

55

60

65

12

connections by selecting a database driver, a database loca-
tion, or URL, and provide authentication credentials for the
database. Each connection can be named for easy reference
thereafter, and can be defined for use in an environment, for
example a connection might be associated with use in a
quality assurance environment.

The exemplary editor of FIG. 13 also allows a user to
define queries. FIG. 15 illustrates a user interface of the
editor which can be utilized to define a query and assign a
query 1D thereto. Multiple queries can be added via this
interface, each including their own query ID for easy ref-
erence thereto. In an exemplary use scenario illustrated in
FIG. 15, a user utilizes this interface to create a query and
assign it a “dq” query ID.

Following definition of a connection and a query, a query
can be executed on a connection to generate query output.
FIG. 16 illustrates a user interface of the exemplary editor
which can be utilized to identify a query ID and a connection
ID. A query execution ID and query execution output ID can
then be provided by a user in association with the identified
query ID and connection ID. FIG. 17 illustrates how a user
interface allows for a preview of execute query output for a
particular query on a particular connection. Returning to the
exemplary use scenario, a user can utilize this interface to
identify the previously defined “dq” query, and a previously
defined “designStudio-test” connection, assign this combi-
nation a “dql” ID, and assign the output to a “dq-out” output
D.

In preferred implementations, a user interface for data
binding allows not just for the definition of database con-
nections and queries, but additionally allows for the use of
filters, conditions, and expressions.

Additionally, predefined, or user configurable, operations
can be performed on execute query output. FIG. 18 illus-
trates a user interface that allows a user to select an opera-
tion, and identify operation input and output IDs. For
example, a query execution output ID can be utilized as an
operation input ID, and an operation output ID can be
identified by a user. Preferably, multiple operations can be
identified and performed in a sequence indicated by a user.

Returning to the exemplary use scenario, a user selects an
operation type from a drop down menu (in this case a “list”
operation), identifies the “dq-out” ID as an input ID for the
operation, and identifies “dql_out” as an output ID for the
operation. Optionally, the user might identify one or more
parameters, although in this exemplary use scenario the user
does not do so. In one or more preferred implementations,
parameters can be bound to variables and can be used in
generating dynamic graphics based on the values of such
variables. For example, in some preferred implementations,
the value of a variable might be utilized to select a color for
a cell or column of a FxGrid component.

Preferably, the user interface is configured to display a
preview for both before and after application of such opera-
tions. FIG. 19 illustrates a preview of generated code both
prior to, and subsequent to, modification in accordance with
a list operation.

The output from this list operation can then be utilized in
the FxGrid DSG component of FIG. 13. The FxGrid com-
ponent can be so configured via use of one of its properties,
a variable property. FIG. 20 illustrates how the variable
property can be associated with the output from this list
operation via reference to the “dql_out” output ID from the
list operation (as illustrated, reference is specifically made to
“dql_out” as a variable by referencing “$var in $dql_out™).

A user interface of the exemplary editor further allows for
specification of various properties of the FxGrid component,

US 9,430,195 Bl

13

including columns of the FxGrid component. Each column
can be associated with dynamic data from the source iden-
tified by the variable property. FIG. 20 illustrates use of the
interface to define two columns, an “ID” column associated
with data from a first column of the “dql_out” source, and
a “NAME” column with data from a second column of the
“dql_out” source. The user interface preferably allows for
formatting of the FxGrid and for each column of the FxGrid
to be set via properties.

In a preferred implementation, the editor includes a plu-
rality of tabs providing various views of defined DSG
components. FIG. 21 illustrates a first tab displaying the
FxGrid component defined via the user interface of FIG. 20.
In this view, the structure of the FxGrid component is
visible, but no dynamic data is displayed. In contrast, FIG.
22 illustrates a second tab displaying a dynamic preview of
the FxGrid component rendered with data from the
“dql_out” source.

Based on the user’s actions in creating this FxGrid
component, DSG source code for such component is gen-
erated. FIG. 23 illustrates DSG source code for this FxGrid
component. This source code can be utilized by a vector
graphics engine to generate dynamic vector graphics in
general accordance with the description herein. FIG. 28
illustrates how code input, input from a data source, and a
parameter map can be utilized by a dynamic server graphic
engine to generate a server vector graphic, .pdf, or image
output.

Just as the editor can be utilized to create a dynamic
vector graphic comprising an FxGrid component, more
complex graphics can be built comprising multiple compo-
nents utilizing multiple data sources. In preferred implemen-
tations, such components might include a FText component
for formatted text, a FxGrid component representing a fixed
column grid, a DGrid component representing a dynamic
column grid, a Stack component representing a stack of
other components, a List component, an Array component
that is similar to the FxGrid component but supports scaling,
and chart components, which may support, for example, pie,
radar, and bar charts.

At least some preferred implementations may additionally
include a layout component which may be utilized to
organize data and/or multiple other components according to
predefined layouts, such as, for example, a hierarchical
layout, a grid layout, or a circular layout. FIGS. 24A-C
illustrates the same data displayed in three different layouts.
Preferably, a layout can be selected by setting a layout type
property, as illustrated in FIG. 25.

In one or more preferred implementations, control com-
ponents are utilized which allow third party programs and
reports to be included in a dynamic graphic. For example,
Microsoft reporting functionality might be incorporated into
a dynamic graphic via use of a control that is placed on the
canvas of the dynamic graphic. In preferred implementa-
tions, other third party programs, reports, and tools can
similarly be incorporated into a dynamic graphic via a
control. Preferably, such a control is implemented by wrap-
ping such other program, report, or tool in tags specific to the
dynamic graphic, e.g. DSG tags as described hereinabove. In
some implementations, then, when a dynamic graphic con-
taining such a control is later loaded, a handoft to a program
responsible for rendering a report or other content occurs,
and the results from that other program are then incorporated
into a canvas of the dynamic graphic.

Further, at least some preferred implementations may
utilize an include component, which allows for the inclusion
of other files as a resource. For example, multipage DSG

10

15

20

25

30

35

40

45

50

55

60

14

graphics may be created which include header and footer
sections comprising include components referencing files to
be utilized as header and footer images. In such an instance,
the header and footer images would be present on each page
of the DSG graphic, as illustrated in FIG. 26.

Generally, a single DSG page can be utilized to render
results that span multiple pages. Controls, or components,
utilized with DSG may be pagination enabled, i.e. config-
ured to span multiple pages as needed. In at least some
preferred implementations, one or more controls that are
pagination enabled may be laid out with one or more
controls that are not pagination enabled. For example, a first
control A that is pagination enabled may be laid out in a left
column, and a second control B that is not pagination
enabled may be laid out in a right column. The first control
A may include four pages worth of content to display. In
preferred implementations, the first control A could be
displayed in the left column on four pages, while the second
control B would only be displayed in the right column on
page one, as illustrated in FIG. 27A. Alternatively, the
content of the second control B could be duplicated on each
page, as illustrated in FIG. 27B. In at least some preferred
implementations, a user configurable setting allows a user to
select how controls that are not pagination enabled are
displayed.

One or more methods comprising steps for generating
code that can be utilized to render dynamic graphics is
described hereinabove. In at least some implementations,
each of these steps is performed, or confirmed, manually by
auser using a user interface of an editor tool. In at least some
preferred implementations, however, one, some or all of
these steps are performed automatically without user input.
In at least some preferred implementations, a user interface
streamlines this process to enable less technologically savvy
users to easily create and edit graphic templates.

Exemplary embodiments of the present invention are
described above. No element, act, or instruction used in this
description should be construed as important, necessary,
critical, or essential to the invention unless explicitly
described as such.

Based on the foregoing description, it will be readily
understood by those persons skilled in the art that the present
invention is susceptible of broad utility and application.
Many embodiments and adaptations of the present invention
other than those specifically described herein, as well as
many variations, modifications, and equivalent arrange-
ments, will be apparent from or reasonably suggested by the
present invention and the foregoing descriptions thereof,
without departing from the substance or scope of the present
invention. Accordingly, while the present invention has been
described herein in detail in relation to one or more preferred
embodiments, it is to be understood that this disclosure is
only illustrative and exemplary of the present invention and
is made merely for the purpose of providing a full and
enabling disclosure of the invention. The foregoing disclo-
sure is not intended to be construed to limit the present
invention or otherwise exclude any such other embodiments,
adaptations, variations, modifications or equivalent arrange-
ments, the present invention being limited only by the claims
appended hereto and the equivalents thereof.

What is claimed is:

1. A method of rendering a dynamic graphic utilizing a
vector graphics engine comprising:

receiving, at a vector graphics engine loaded on a com-

puting device, a graphic template; wherein the graphics
template is enabled to contain complex compound
primitives and wherein the vector graphics engine is

US 9,430,195 Bl

15

enabled to convert the complex compound primitives
into vector graphics output; wherein the complex com-
pound primitive contains code; wherein the code in the
complex compound primitive is enabled to be trans-
lated by the vector graphics engine into a scalable
vector graphics format; wherein the complex primitive
supports inheritance to enable creation of additional
layers and by enabling the complex compound primi-
tive to be extended in another complex compound
primitive that inherits an object of the complex com-
pound primitive; wherein the code is enabled to be
converted into high level constructs; wherein the high
level constructs include an array construct, grid con-
struct, list construct, and stack construct;
receiving, at the vector graphics engine loaded on the
computing device, a data template; wherein the
vector graphics engine is enabled to read data from
data sources identified in the data template including
being enabled to read data from a database; binding,
in a data binding process executed by a processor of
the computing device, data identified via the data
template to vector graphic content identified by the
graphic template; and
generating, by the processor of the computing device,
vector graphic output that conforms to a particular
format, the vector graphic output including the
bound data identified via the data template in vector
graphic form in accordance with the graphic tem-
plate.

2. The method of claim 1, wherein the particular format
that the vector graphic output conforms to is the scalable
vector graphic (SVG) standard.

3. The method of claim 1, wherein the graphic template
comprises a plurality of other graphic templates.

4. The method of claim 1, wherein the graphic template
comprises a plurality of other graphic templates associated
together in an embedded hierarchy.

5. The method of claim 1, wherein the method includes a
step of parsing, by the vector graphics engine loaded on the
computing device, source for one or more tags existing in a
special namespace.

6. The method of claim 5, wherein the method includes a
step of matching such one or more tags to one or more
complex compound primitives programmatically enabled
within the vector graphics engine loaded on the computing
device.

7. The method of claim 1, wherein the vector graphics
engine loaded on the computing device is configured to
convert code representative of high level constructs into the
particular format.

8. The method of claim 7, wherein the high level con-
structs include an array construct.

9. The method of claim 7, wherein the high level con-
structs include a grid construct.

10. The method of claim 7, wherein the high level
constructs include a list construct.

11. The method of claim 7, wherein the high level
constructs include a stack construct.

12. The method of claim 1, wherein the vector graphics
engine is configured to pass through markup standard to the
particular format.

13. The method of claim 1, wherein the computing device
is connected to a network.

14. The method of claim 13, wherein the vector graphics
engine loaded on the computing device is configured to
process received data asynchronously.

15

35

40

45

55

16

15. The method of claim 13, wherein the vector graphics
engine loaded on the computing device is configured to
process received data synchronously.
16. A method of dynamically generating a graphic com-
prising:
receiving, at a vector graphics engine loaded on a server
system, graphic template input; wherein the graphics
template is enabled to contain complex compound
primitives and wherein the vector graphics engine is
enabled to convert the complex compound primitives
into vector graphics output;
receiving, at the vector graphics engine loaded on the server
system, data template input; wherein the vector graphics
engine is enabled to read data from data sources identified in
the data template including being enabled to read data from
a database; wherein the complex compound primitive con-
tains code; wherein the code in the complex compound
primitive is enabled to be translated by the vector graphics
engine into a scalable vector graphics format; wherein the
complex primitive supports inheritance to enable creation of
additional layers by enabling the complex compound primi-
tive to be extended in another complex compound primitive
that inherits an object of the complex compound primitive;
wherein the code is enabled to be converted into high level
constructs; wherein the high level constructs include an
array construct, grid construct, list construct, and stack
construct; and
generating, at the server system, code in a standard format
representative of a vector graphic, said generating
comprising;
identifying a special tag associated with the vector graph-
ics engine, converting code associated with this tag
from a first format associated with the vector graphics
engine to a second standardized format, and binding
data content based on the received data template input
to graphic content based on the received graphic tem-
plate input.
17. A computer program product comprising:
a non-transitory computer readable medium encoded with
computer executable program code, the code config-
ured to enable the execution of:
receiving, at a vector graphics engine loaded on a server
system, graphic template input; wherein the graphics
template is enabled to contain complex compound
primitives and wherein the vector graphics engine is
enabled to convert the complex compound primitives
into vector graphics output; wherein the complex com-
pound primitive contains code; wherein the code in the
complex compound primitive is enabled to be trans-
lated by the vector graphics engine into a scalable
vector graphics format; wherein the complex primitive
supports inheritance to enable creation of additional
layers by enabling the complex compound primitive to
be extended in another complex compound primitive
that inherits an object of the complex compound primi-
tive; wherein the code is enabled to be converted into
high level constructs; wherein the high level constructs
include an array construct, grid construct, list construct,
and stack construct;
receiving, at the vector graphics engine loaded on the
server system, data template input; wherein the vec-
tor graphics engine is enabled to read data from data
sources identified in the data template including
being enabled to read data from a database; and

generating, at the server system, code in a standard
format representative of a vector graphic, said gen-
erating comprising;

US 9,430,195 Bl

17

identifying a special tag associated with the vector
graphics engine, converting code associated with
this tag from a first format associated with the
vector graphics engine to a second standardized
format, and
binding data content based on the received data
template input to graphic content based on the
received graphic template input.
18. A computer program product comprising:
anon-transitory computer readable medium encoded with
computer executable program code, the code config-
ured to enable the execution of:
receiving, at a vector graphics engine loaded on a com-
puting device, a graphic template; wherein the graphics
template is enabled to contain complex compound
primitives and wherein the vector graphics engine is
enabled to convert the complex compound primitives
into vector graphics output; wherein the complex com-
pound primitive contains code; wherein the code in the
complex compound primitive is enabled to be trans-
lated by the vector graphics engine into a scalable
vector graphics format; wherein the complex primitive
supports inheritance to enable creation of additional
layers by enabling the complex compound primitive to
be extended in another complex compound primitive

10

15

18

that inherits an object of the complex compound primi-
tive; wherein the code is enabled to be converted into
high level constructs; wherein the high level constructs
include an array construct, grid construct, list construct,
and stack construct;

receiving, at the vector graphics engine loaded on the

computing device, a data template; wherein the vector
graphics engine is enabled to read data from data
sources identified in the data template including being
enabled to read data from a database;

binding, in a data binding process executed by a processor

of the computing device, data identified via the data
template to vector graphic content identified by the
graphic template; and

generating, by the processor of the computing device,

vector graphic output that conforms to a particular
format, the vector graphic output including the bound
data identified via the data template in vector graphic
form in accordance with the graphic template.

19. The method of claim 18, wherein the particular format
that the vector graphic output conforms to is the scalable
vector graphic (SVG) standard.

20. The method of claim 19, wherein the graphic template
comprises a plurality of other graphic templates.

#* #* #* #* #*

